Continuous maps preserving local spectra of matrices
نویسندگان
چکیده
منابع مشابه
Linear maps preserving or strongly preserving majorization on matrices
For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...
متن کاملlinear maps preserving or strongly preserving majorization on matrices
for $a,bin m_{nm},$ we say that $a$ is left matrix majorized (resp. left matrix submajorized) by $b$ and write $aprec_{ell}b$ (resp. $aprec_{ell s}b$), if $a=rb$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $r.$ moreover, we define the relation $sim_{ell s} $ on $m_{nm}$ as follows: $asim_{ell s} b$ if $aprec_{ell s} bprec_{ell s} a.$ this paper characterizes all linear p...
متن کاملMappings Preserving Spectra of Products of Matrices
Let Mn be the set of n × n complex matrices, and for every A ∈ Mn, let Sp(A) denote the spectrum of A. For various types of products A1 ∗ · · · ∗ Ak on Mn, it is shown that a mapping φ : Mn → Mn satisfying Sp(A1 ∗ · · · ∗ Ak) = Sp(φ(A1) ∗ · · · ∗ φ(Ak)) for all A1, . . . , Ak ∈ Mn has the form X → ξS−1XS or A → ξS−1XtS for some invertible S ∈ Mn and scalar ξ. The result covers the special cases...
متن کاملContinuous extension of order-preserving homogeneous maps
Maps / defined on the interior of the standard non-negative cone K in R. which are both homogeneous of degree 1 and order-preserving arise naturally in the study of certain classes of Discrete Event Systems. Such maps are non-expanding in Thompson's part metric and continuous on the interior of the cone. It follows from more general results presented here that all such maps have a homogeneous o...
متن کاملOn the pointfree counterpart of the local definition of classical continuous maps
The familiar classical result that a continuous map from a space $X$ to a space $Y$ can be defined by giving continuous maps $varphi_U: U to Y$ on each member $U$ of an open cover ${mathfrak C}$ of $X$ such that $varphi_Umid U cap V = varphi_V mid U cap V$ for all $U,V in {mathfrak C}$ was recently shown to have an exact analogue in pointfree topology, and the same was done for the familiar cla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2016
ISSN: 0024-3795
DOI: 10.1016/j.laa.2015.11.017